a) Vẽ đồ thị của các hàm số
a) Vẽ đồ thị các hàm số y = x + 1; y = ; y = .
b) Gọi lần lượt là góc tạo bởi các đường thẳng và trục Ox. Chứng minh rằng:
tan α = 1, tan β = , .
Tính số đo các góc .
a) Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các hàm số sau:
y = x + 2
y = -x + 2
b) Gọi giao điểm của hai đường thẳng y = x + 2 và y = -x + 2
với trục hoành theo thứ tự là A, B và gọi giao điểm của hai đường thẳng đó là C.
Tính các góc của tam giác ABC (làm tròn đến độ)
c) Tính chu vi và diện tích của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimet).
Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a) a = 2 và đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5.
b) a = 3 và đồ thị của hàm số đi qua điểm A (2; 2)
c) Đồ thị của hàm số song song với đường thẳng y = và đi qua điểm B (1; ).
Cho hàm số y = -2x + 3
a) Vẽ đồ thị của hàm số
b) Tính góc tạo bởi đường thẳng y = -2x + 3 và trục Ox (làm tròn đến phút)
Cho hàm số bậc nhất y = ax + 3
a) Xác định hệ số góc a, biết rằng đồ thị của hàm số đi qua điểm A(2; 6).
b) Vẽ đồ thị của hàm số.
Cho hàm số bậc nhất y = ax – 4 (1). Hãy xác định hệ số a trong mỗi trường hợp sau:
a) Đồ thị của hàm số (1) cắt đường thẳng y = 2x – 1 tại điểm có hoành độ bằng 2.
b) Đồ thị của hàm số (1) cắt đường thẳng y = -3x + 2 tại điểm có tung độ bằng 5.
a) Vẽ đồ thị của hàm số sau trên cùng một mặt phẳng tọa độ:
b, Một đường thẳng song song với trục hoành Ox, cắt trục tung Oy tại điểm có tung độ bằng 1, cắt các đường thẳng
theo thứ tự tại hai điểm M và N. Tìm tọa độ của hai điểm M và N.
Cho hai hàm số bậc nhất y = 2x + 3k và y = (2m + 1)x + 2k – 3. Tìm điều kiện đối với m và k để đồ thị của hai hàm số là:
a) Hai đường thẳng cắt nhau.
b) Hai đường thẳng song song với nhau.
c) Hai đường thẳng trùng nhau.
Cho hàm số y = 2x + b. Hãy xác định hệ số b trong mỗi trường hợp sau:
a) Đồ thị của hàm số đã cho cắt trục tung tại điểm có tung độ bằng – 3.
b) Đồ thị của hàm số đã cho đi qua điểm A(1; 5).
Cho hàm số y = ax + 3. Hãy xác định hệ số a trong mỗi trường hợp sau:
a) Đồ thị của hàm số song song với đường thẳng y = -2x.
b) Khi x = 2 thì hàm số có giá trị y = 7.
Cho hai hàm số bậc nhất y = mx + 3 và y = (2m + 1)x – 5
Tìm giá trị của m để đồ thị của hai hàm số đã cho là:
a) Hai đường thẳng song song với nhau.
b) Hai đường thẳng cắt nhau.
Hãy chỉ ra ba cặp đường thẳng cắt nhau và các cặp đường thẳng song song với nhau trong số các đường thẳng sau:
a) y = 1,5x + 2 ; b) y = x + 2 ; c) y = 0,5x – 3
d) y = x – 3 ; e) y = 1,5x – 1 ; g) y = 0,5x + 3
: Đồ thị của hàm số y = được vẽ bằng compa và thước thẳng (h.8).
Hãy thực hiện cách vẽ đó rồi nêu lại cách thực hiện.
Áp dụng: Vẽ đồ thị của hàm số y = bằng compa và thước thẳng.
Hướng dẫn: Tìm điểm trên trục tung có tung độ bằng .
a) Biết rằng với x = 4 thì hàm số y = 3x + b có giá trị là 11. Tìm b. Vẽ đồ thị của hàm số với giá trị B vừa tìm được.
b) Biết rằng đồ thị của hàm số y = ax + 5 đi qua điểm A(-1; 3). Tìm a. Vẽ đồ thị hàm số với giá trị a tìm được
a) Vẽ đồ thị của các hàm số y = x + 1 và y = -x + 3 trên cùng một mặt phẳng tọa độ.
b) Hai đường thẳng y = x + 1 và y = -x + 3 cắt nhau tại C và cắt trục Ox theo thứ tự A và B. Tìm tọa độ các điểm A, B, C.
c) Tính chu vi và diện tích của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimet)
a) Vẽ đồ thị của các hàm số y = x và y = 2x + 2 trên cùng một mặt phẳng tọa độ.
b) Gọi A là giao điểm của hai đồ thị nói trên, tìm tọa độ điểm A.
c) Vẽ qua điểm B(0; 2) một đường thẳng song song với trục Ox, cắt đường thẳng y = x tại điểm C. Tìm tọa độ điểm C rồi tính diện tích tam giác ABC (đơn vị đo trên các trục tọa độ là xentimet)
a) Vẽ đồ thị của các hàm số:
y = 2x; y = 2x + 5; y = x; y = x + 5 trên cùng một mặt phẳng tọa độ.
b) Bốn đường thẳng trên cắt nhau tạo thành tứ giác OABC (O là gốc tọa độ). Tứ giác OABC có phải là hình bình hành không? Vì sao?
Bảo hiểm, thưởng, chăm sóc sức khỏe, đào tạo, tăng lương, cấp laptop, phụ cấp
a) Hàm số trên là đồng biến hay nghịch biến trên R? Vì sao?
b) Tính giá trị của y khi x = 1 + .
c) Tính giá trị của x khi y =
Với những giá trị nào của m thì mỗi hàm số sau là hàm số bậc nhất?
Đăng ký tài khoản ngay bây giờ để sử dụng các tiện ích chuyển đổi số của GDĐT Việt Nam.