Dựng một tam giác vuông, biết cạnh huyền dài 4cm và một cạnh góc vuông dài 2,5cm.
Một chiếc cầu được thiết kế như hình 21 có độ dài AB = 40m, chiều cao MK = 3m. Hãy tính bán kính của đường tròn chứa cung AMB.
Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn. Qua M kẻ hai đường thẳng . Đường thẳng thứ nhất cắt (O) tại A và B. Đường thẳng thứ hai cắt (O) tại C và D. Chứng minh MA.MB = MC.MD.
Hướng dẫn: Xét cả hai trường hợp điểm M nằm bên trong và bên ngoài đường tròn. Trong mỗi trường hợp, xét hai tam giác đồng dạng.
Trên đường tròn (O) đường kính AB, lấy điểm N (khác A và B). Vẽ tiếp tuyến của (O) tại A. Đường thẳng BM cắt tiếp tuyến đó tại C. Chứng minh rằng ta luôn có:
$MA^{2}=MB.MC$
Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại A và B. Vẽ đường thẳng qua A cắt (O) tại M và cắt (O') tại N (A nằm giữa M và N). Hỏi MBN là tam giác gì? Tại sao?
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Vẽ các đường kính AC và AD của hai đường tròn. Chứng minh rằng ba điểm C, B, D thẳng hàng.
Cho đường tròn tâm O, đường kính AB và S là một điểm nằm bên ngoài đường tròn. SA và SB lần lượt cắt đường tròn tại M, N. Gọi H là giao điểm của BM và AN. Chứng minh rằng SH vuông góc với AB.
Một huấn luyện viên cho cầu thủ tập sút bóng vào cầu môn PQ. Bóng được đặt ở các vị trí A, B, C trên một cung trong như hình 20. Hãy so sánh các góc $\widehat{PAQ}$, $\widehat{PBQ}$, $\widehat{PCQ}$.
Muốn xác định tâm của một đường tròn mà chỉ dùng êke thì phải làm như thế nào?
Xem hình 19 (hai đường tròn có tâm là B, C và điểm B nằm trên đường tròn tâm C).
a) Biết $\widehat{MAN}$ = $30^{\circ}$, tính $\widehat{PCQ}$
b) Nếu $ \widehat{PCQ}$ = $136^{\circ}$ thì $ \widehat{MAN}$ có số đo là bao nhiêu?
Chúng tôi sẽ gửi thư thông báo cho bạn mỗi khi có bài viết mới được đăng.