Câu 64 Trang 92
Lớp 9 SGK Toán tập 2

Câu 64 Trang 92

Lời giải

Giải Câu 64 Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

a) \(\widehat {BA{\rm{D}}} = {{{{90}^0} + {{120}^0}} \over 2} = {105^0}\) (góc nội tiếp chắn \(\overparen{BCD}\))     (1)

\(\widehat {A{\rm{D}}C} = {{{{60}^0} + {{90}^0}} \over 2} = {75^0}\) ( góc nội tiếp chắn\(\overparen{ABC}\) )          (2)

Từ (1) và (2) có:

\(\widehat {BA{\rm{D}}} + \widehat {A{\rm{D}}C} = {105^0} + {75^0} = {180^0}\) (3)

Mà \(\widehat {BA{\rm{D}}}\) và \(\widehat {A{\rm{D}}C}\) là hai góc trong cùng phía tạo bởi cát tuyến \(AD\) và hai đường thẳng \(AB, CD\).

=> \(AB // CD\). Do đó tứ giác \(ABCD\) là hình thang.

Mà $ABCD$ nội tiếp hình tròn nên $ABCD$ là hình thang cân.

Vậy \(ABCD\) là hình thang cân.

(\(BC = AD\) và \(sđ\overparen{BC}\)=\(sđ\overparen{AD}\)=\(90^0\))

b) Gọi $I$ là giao của hai đường chéo \(AC\) và \(BD\).

\(\widehat {CI{\rm{D}}}\) là góc có đỉnh nằm trong đường tròn, chắn cung CD và cung AB, nên:

\(\widehat{CI{\rm{D}}}\)=\(\frac{sđ\overparen{AB}+sđ\overparen{CD}}{2}\)=\({{{{60}^0} +{{120}^0}} \over 2} = {90^0}\)

Vậy \(AC \bot BD\)

c)

Vì \(sđ\overparen{AB}\) = \(60^0\) nên \(\widehat {AOB} = {60^0}\) (góc ở tâm)

Lại có: $\Delta AOB$ cân tại $O$ (vì $OA=OB=R$)

\(=> ∆AOB\) đều => \(AB = R\)

Ta có: $\Delta COD$ cân tại $O$ (vì $OC=OD=R$)

lại có: \(sđ\overparen{BC}\)= \(90^0\) => \(\widehat {COD} = {90^0}\) => $\Delta COD$ vuông cân tại O

=> $BC=\sqrt{2.OB^2}=R.\sqrt{2}$

Vì $ABCD$ là hình thang cân nên $AD=BC=R.\sqrt2$

Ta có: \(sđ\overparen{CD}\)= \(120^0\) => \(\widehat {COD} = {120^0}\)

Từ $O$ kẻ $OH\perp CD,H\in CD$ => \(\widehat {COH} = \frac{1}{2}.\widehat{COD}={60^0}\)

Trong $\Delta COH$ vuông tại $H$ có:

$tan COH=\frac{CH}{OC}=>tan {60^0}=\frac{CH}{R}=>CH=R.\sqrt{3}$

Vậy các cạnh của tứ giác $ABCD$ có độ dài: $BC=AD=R.\sqrt{2};AB=R;CD=R.\sqrt{3}$

Copy & Share

GDĐT Việt Nam
GDĐT Việt Nam

Advertisment
ĐĂNG KÝ TÀI KHOẢN GIÁO DỤC ĐIỆN TỬ

Đăng ký tài khoản ngay bây giờ để sử dụng các tiện ích chuyển đổi số của GDĐT Việt Nam.