Câu 51 Trang 87
Lớp 9 SGK Toán tập 2

Câu 51 Trang 87

Lời giải

Giải Câu 51 Bài 6: Cung chứa góc

Ta có: $\widehat{BOC}$ là góc ở tâm chắn cung BC và $\widehat{BAC}$ là góc nội tiếp chắn cung BC

=> $\widehat{BAC}$  = $\frac{1}{2}$ $\widehat{BOC}$ (định lý về góc nội tiếp và góc ở tâm)

=> $\widehat{BOC}$ = $2$ . $\widehat{BAC}$ = $2.60^{\circ}$     (1)

Xét tứ giác AC'HB" có" $\widehat{A}+\widehat{HC'A}+\widehat{HB'A}+\widehat{B'HC'}=360^{\circ}$ (tổng 4 góc trong tứ giác)

=> $\widehat{B'HC'}$ = $360^{\circ}-60^{\circ}-90^{\circ}-90^{\circ}=120^{\circ}$

mà $\widehat{B'HC'}$ đối đỉnh $\widehat{BHC}$ => $\widehat{BHC}$ = $120^{\circ}$    (2)

Trong $\Delta IBC$:

BI là tia phân giác $\widehat{ABC}$ =>  $\widehat{CBI}$ = $\frac{1}{2}$ $\widehat{ABC}$

CI là tia phân giác $\widehat{ACB}$ =>  $\widehat{BCI}$ = $\frac{1}{2}$ $\widehat{ACB}$

=> $\widehat{CBI}$  + $\widehat{BCI}$ = $\frac{1}{2}$ ($\widehat{ABC}$ + $\widehat{ACB}$)

               = $\frac{1}{2}$ . $\left(180^{\circ}-\widehat{BAC}\right)$ = $\frac{1}{2}$ . $\left (180^{\circ}-60^{\circ}\right)$

               = $60^{\circ}$

=> $\widehat{BIC}$ = $180^{\circ}-\widehat{CBI}$ = $180^{\circ}-60^{\circ}$ = $120^{\circ}$   (3)

Từ (1)(2)(3), các điểm O, I, H nằm trên cung chứa góc $120^{\circ}$ dựng trên đoạn BC 

Vậy 5 điểm B, C, O, H, I nằm trên cùng 1 đường tròn

Copy & Share

GDĐT Việt Nam
GDĐT Việt Nam

Advertisment
ĐĂNG KÝ TÀI KHOẢN GIÁO DỤC ĐIỆN TỬ

Đăng ký tài khoản ngay bây giờ để sử dụng các tiện ích chuyển đổi số của GDĐT Việt Nam.