Câu 39 Trang 83
Lớp 9 SGK Toán tập 2

Câu 39 Trang 83

Lời giải

Giải Câu 39 Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn

 AB, CD là 2 đường kính vuông góc => ta có 4 góc ở tâm là các góc vuông.

=> $\widehat{AOD}$ = $\widehat{AOC}$ = $\widehat{BOD}$ =$\widehat{BOC}$ = $90^{\circ}$

=> sđ cung AD = sđ cung AC = sđ cung BD = sđ cung BC = $90^{\circ}$

Ta có: $\widehat{EMS}$ là góc tạo bởi tia tiếp tuyến ME và dây cung MC => $\widehat{EMS}$ = $\frac{1}{2}$ . sđ cung MC (1) 

Lại có: $\widehat{BSM}$ là góc có đỉnh nằm trong đường tròn (O) => $\widehat{BSM}$ = $\frac{1}{2}$ . (sđ cung AC + sđ cung BM)

Vì sđ cung AC = sđ cung BC (cmt) => $\widehat{BSM}$ = $\frac{1}{2}$ . (sđ cung BC + sđ cung BM) = $\frac{1}{2}$ . sđ cung MC   (2)

Từ (1) (2) => $\widehat{EMS}$ = $\widehat{BSM}$  (= $\frac{1}{2}$ . sđ cung MC)

=> $\Delta ESM$ là tam giác cân tại E (dấu hiệu nhận biết tam giác cân)

=> $ES = EM$  

Copy & Share

GDĐT Việt Nam
GDĐT Việt Nam

Advertisment
ĐĂNG KÝ TÀI KHOẢN GIÁO DỤC ĐIỆN TỬ

Đăng ký tài khoản ngay bây giờ để sử dụng các tiện ích chuyển đổi số của GDĐT Việt Nam.