Lời giải
- Tứ giác ABCD là tứ giác nội tiếp => $\widehat{B}+\widehat{D}=180^{\circ}$
$\widehat{ABC}$ = $\widehat{E}$ + $\widehat{ECB}$ (góc ngoài $\Delta EBC$)
= $40^{\circ}$ + $\widehat{ECB}$ (1)
$\widehat{ADC}$ = $\widehat{F}$ + $\widehat{DCF}$ (góc ngoài $\Delta FCD$)
= $20^{\circ}$ + $\widehat{DCF}$ (2)
=> $\widehat{ABC}+\widehat{ADC}$ = $40^{\circ}+20^{\circ}+\widehat{ECB}+\widehat{DCF}$
=> $180^{\circ}$ = $60^{\circ}+2.\widehat{ECB}$ (Vì $\widehat{ECB}=\widehat{DCF}$)
=> $\widehat{ECB}$ = $60^{\circ}$
Thay vào (1) có: $\widehat{ABC}=40^{\circ}+60^{\circ}=100^{\circ}$
Thay vào (2) có: $\widehat{ADC}=20^{\circ}+60^{\circ}=80^{\circ}$
- $\widehat{BCD}+\widehat{EBC}=180^{\circ}$ (2 góc kề bù)
=> $\widehat{BCD}=180^{\circ}-\widehat{EBC}=180^{\circ}-60^{\circ}=120^{\circ}$
- Tứ giác ABCD là tứ giác nội tiếp => $\widehat{A}\widehat{BCD}=180^{\circ}$
=> $\widehat{A}=180^{\circ}-\widehat{BCD}=180^{\circ}-120^{\circ}=60^{\circ}$