Câu 71 Trang 40: Rút gọn biểu thức
- David Smith
- February 10, 2022
- 15 min Read
- 2 comments
Ta có :
a. $(\sqrt{8}-3\sqrt{2}+\sqrt{10})\sqrt{2}-\sqrt{5}$
= $\sqrt{16}-6+\sqrt{20}-\sqrt{5}$
= $4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2$
Vậy $(\sqrt{8}-3\sqrt{2}+\sqrt{10})\sqrt{2}-\sqrt{5}=\sqrt{5}-2$
b. $0,2.\sqrt{(-10^{2}).3}+2\sqrt{(\sqrt{3}-\sqrt{5})^{2}}$
= $0,2\left | -10 \right |\sqrt{3}+2\left | \sqrt{3}-\sqrt{5} \right |$
= $0,2.10.\sqrt{3}+2(\sqrt{5}-\sqrt{3})$
= $2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}$
Vậy $0,2.\sqrt{(-10^{2}).3}+2\sqrt{(\sqrt{3}-\sqrt{5})^{2}}=2\sqrt{5}$
c. $\left ( \frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2} \sqrt{2}+\frac{4}{5}\sqrt{200}\right ):\frac{1}{8}$
= $\left ( \frac{1}{2}\sqrt{\frac{2}{2^{2}}}-\frac{3}{2} \sqrt{2}+\frac{4}{5}\sqrt{10^{2}.2}\right ):\frac{1}{8}$\
= $\left ( \frac{1}{4}\sqrt{2}-\frac{3}{2} \sqrt{2}+8\sqrt{2}\right ):\frac{1}{8}$
= $\frac{27}{4}\sqrt{2}:\frac{1}{8}=\frac{27}{4}\sqrt{2}.8=54\sqrt{2}$
Vậy $\left ( \frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2} \sqrt{2}+\frac{4}{5}\sqrt{200}\right ):\frac{1}{8}=54\sqrt{2}$
d. $2\sqrt{(\sqrt{2}-3)^{2}}+\sqrt{2(-3)^{2}}-5\sqrt{(-1)^{4}}$
= $2\left | \sqrt{2}-3 \right |+\left | -3 \right |\sqrt{2}-5\left | -1 \right |$
= $2(3-\sqrt{2})+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}$
Vậy $2\sqrt{(\sqrt{2}-3)^{2}}+\sqrt{2(-3)^{2}}-5\sqrt{(-1)^{4}}=1+\sqrt{2}$