a. $\sqrt{(2x-1)^{2}}=3$
<=> $\left | 2x-1 \right |=3$
<=> $\left\{\begin{matrix}3\geq 0 & & \\ 2x-1=3 & & \\ 2x-1=-3 & & \end{matrix}\right.$
<=> $\left\{\begin{matrix}2x=4 & \\ 2x=-2 & \end{matrix}\right.<=> \left\{\begin{matrix}x=2 & \\ x=-1 & \end{matrix}\right.$
Vậy $\left\{\begin{matrix}x=2 & \\ x=-1 & \end{matrix}\right.$
b. $\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}$
<=> $\frac{5}{3}\sqrt{15x}-\sqrt{15x}-\frac{1}{3}\sqrt{15x}=2$
<=> $\sqrt{15x}(\frac{5}{3}-1-\frac{1}{3})=2$
<=> $\sqrt{15x}\frac{1}{3}=2<=> \sqrt{15x}=6$
<=> $15x=6^{2}<=> x=\frac{36}{15}=\frac{12}{5}$
Vậy $x=\frac{12}{5}$