Bài 15 trang 11 - Giải phương trình
Lớp 9 SGK Toán tập 1

Bài 15 trang 11 - Giải phương trình

Ta có : 

a.  $x^{2}-5=0$

<=> $x^{2}-(\sqrt{5})^{2}=0$

<=> $(x+\sqrt{5})(x-\sqrt{5})=0$

<=> $\left\{\begin{matrix}x+\sqrt{5}=0 & \\ x-\sqrt{5}=0 & \end{matrix}\right.$

<=>  $\left\{\begin{matrix}x=\sqrt{5}& \\ x=-\sqrt{5} & \end{matrix}\right.$

Vậy $S={-\sqrt{5},\sqrt{5}}$

b.  $x^{2}-2\sqrt{11}x+11=0$

<=>  $x^{2}-2.x.\sqrt{11}+(\sqrt{11})^{2}=0$

<=>  $(x-\sqrt{11})^{2}=0$

<=>  $x-\sqrt{11}=0$

<=>  $x=\sqrt{11}$

Vậy $S={\sqrt{11}}$ .

Copy & Share

Hi, I'm David Smith

I'm David Smith, husband and father , I love Photography,travel and nature. I'm working as a writer and blogger with experience of 5 years until now.

ads

Get The Best Blog Stories into Your inbox!

Sign up for free and be the first to get notified about new posts.