Bài 15 trang 11 - Giải phương trình
Lớp 9 SGK Toán tập 1

Bài 15 trang 11 - Giải phương trình

Ta có : 

a.  $x^{2}-5=0$

<=> $x^{2}-(\sqrt{5})^{2}=0$

<=> $(x+\sqrt{5})(x-\sqrt{5})=0$

<=> $\left\{\begin{matrix}x+\sqrt{5}=0 & \\ x-\sqrt{5}=0 & \end{matrix}\right.$

<=>  $\left\{\begin{matrix}x=\sqrt{5}& \\ x=-\sqrt{5} & \end{matrix}\right.$

Vậy $S={-\sqrt{5},\sqrt{5}}$

b.  $x^{2}-2\sqrt{11}x+11=0$

<=>  $x^{2}-2.x.\sqrt{11}+(\sqrt{11})^{2}=0$

<=>  $(x-\sqrt{11})^{2}=0$

<=>  $x-\sqrt{11}=0$

<=>  $x=\sqrt{11}$

Vậy $S={\sqrt{11}}$ .

Copy & Share

GDĐT Việt Nam
GDĐT Việt Nam

Advertisment
ĐĂNG KÝ TÀI KHOẢN GIÁO DỤC ĐIỆN TỬ

Đăng ký tài khoản ngay bây giờ để sử dụng các tiện ích chuyển đổi số của GDĐT Việt Nam.