Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp
Toán CHƯƠNG 3: GÓC VỚI ĐƯỜNG TRÒN

Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

1. Định nghĩa 

a) Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác và đa giác này gọi là nội tiếp đường tròn.

b) Đường tròn tiếp xúc với tất cả các cạnh của một đa giác được gọi là đường tròn  nội tiếp đa giác và đa giác được gọi là ngoại tiếp đường tròn.

2. Định lí

Bất kì đa giác đều nào cũng có một đường tròn ngoại tiếp và một đường tròn nội tiếp 

Tâm của một đường tròn ngoại tiếp trùng với tâm đường tròn nội tiếp và được gọi là tâm của đa giác đều.

3. Công thức tính bán kính đường tròn ngoại tiếp và đường tròn nội tiếp đa giác đều.

Đa giác đều n cạnh có độ dài mỗi cạnh là a, R là bán kính đường tròn ngoại tiếp và r là bán kính đường tròn nội tiếp đa giác. Ta có:

 $R=\frac{a}{2.sin({180^{\circ}/n})}$, $r=\frac{a}{2.tan({180^{\circ}/n})}$ 

Copy & Share

GDĐT Việt Nam
GDĐT Việt Nam

Advertisment
ĐĂNG KÝ TÀI KHOẢN GIÁO DỤC ĐIỆN TỬ

Đăng ký tài khoản ngay bây giờ để sử dụng các tiện ích chuyển đổi số của GDĐT Việt Nam.